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PLASMA JETS

All kinds of electrical excitations: DC, AC, RF, MW, continuous or pulsed

Rare gases (with or without admixtures: O,, N,, H,O,,...) but also pure N, or Air

Unlimited terminology: APPJ, Plasma Plume, Plasma Pencil, Plasma Gun, Plasma Torch,...

PSST 19 (2010) 025003
Z. Cao et al

Discharge operated in a non-sealed electrode arrangement
plasma « expansion » outside the discharge region
either through high gas flow or determined by the electric field
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Washington University, Keidar et al

Osaka University
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PLASMA JETS
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Transferred arc jets/
free expanding MW plasma torch
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PLASMA JETS

Non transferred arc jets, tube is conductive
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Cross sectional views of the basic geometries of coaxial plasma jets

Almost all well-known “old atmospheric
pressure discharges” have been coined /
called more recently as plasma jets!

J Winter et al Plasma Sources Sci. Technol. 24 (2015) 064001
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PLASMA JETS

Room-temperature atmospheric pressure plasma plume
for biomedical applications

M. Laroussi® and X. Lu  APPLIED PHYSICS LETTERS 87, 113902 (2005)

Current Probe Oscilloscope

High Voltage
Pulse Generator

FIG. 2. (Color online) Photograph of the plasma plume in contact with
human skin.

Dynamics of an atmospheric pressure plasma plume generated
by submicrosecond voltage pulses

XinPei Lu and Mounir Laroussi®  JOURNAL OF APPLIED PHYSICS 100, 063302 (2006)

plasma pencil

.7 1s driven by few hundred nanosecond wide pulses at repetition rates of a few

kilohertz. Correlation between current-voltage characteristics and fast photography shows that the

plasma plume

is in fact a small-volume of plasma traveling at unusually high velocities.
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Anode

MICROPLASMA JET
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Coaxial DBD

Applied voltage (pulsed) : 3—40 kV (100ns—10ps)
(typically 6 kV, 500 ns)

Frequency : 1-50 kHz (typically 20 kHz)

Gas : He, Ar, with or without O,/N,/H,O
Gas flow : 50 to 5000 sccm

0 5 10 15 20 25 30 mm
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MICROPLASMA JET

Plasma bullet

The plasma jet 1s not continuous; it 1s rather a streamer guided by the gas channel

The velocity of the “guided streamer” is of several hundreds km/s

Stable at atmospheric pressure
Low gas temperature =~ 300-350 K
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ENDOSCOPIC TREATMENTS

Possible use for endoscopic treatments
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Periodic forced flow
in a ns-pulsed cold atmospheric pressure
argon plasma jet
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INTRODUCTION

Cold atmospheric pressure plasma jets (CAPPJ): = Biomedicine m Depollution = Decontamination

® Analytical chemistry  w)p Material processing

K Gazeli et al. 2020 J. Phys. D: Appl. Phys. 53 475202 H Nizard et al. 2015 J. Phys. D: Appl. Phys. 48 415204
A B
Glass limit Glass limit
— Reflections ——
fast desorption of weakly volatile organic compounds Influence of discharge and jet flow coupling on
deposited on glass substrates atmospheric pressure plasma homogeneity

[Reactive species production and surface interaction are strongly influenced by the mixing with ambient air}
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INTRODUCTION

= Flow modification: more studies on helium CAPPJ than on argon CAPP)J

Argon jets : Only RF and microwave Helium jets: DC pulsed and AC

Zhang et al. J. Phys. D: Appl. Phys. 48 (2015) 015203 )
Morabit et al. Plasma Process Polym. 2020;17:e1900217

0.35 mé

Plasma induced instabilities grow in the jet shear layer,
increasing air entertainment at all spatial positions.
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g ) In the plasma plume =) gas heating is negligible
® Significant gas heating due to plasma power = flow velocity increase is negligible
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INTRODUCTION

Lietz, Johnsen, and Kushner
Appl. Phys. Lett. 111, 114101 (2017)

= Helium CAPPJ with one High Voltage (HV) pulse application
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= lonization wave ignition at the inner HV electrode = Pressure wave excites the highly unstable helium
inside the capillary shear layer

™ Local ultra-fast gas heating [Up to now, no comparable studies with argon CAPPJ powered by DC puIsesJ

» Pressure increases by a factor 2
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EXPERIMENTAL SETUP .,

drwv
CALS giode © p¢

M1 -

oy M1 & M2: Parabolic mirrors (f=2.03 m) with large

1
W precision gimbal mirror holders

L1: Condenser lens (f=50 mm)

L2: Achromaticdoublet lens (f=250 mm)

two synchronized generator delays
= high voltage pulse sequences in burst mode

= image acquisition by CCD and ICCD
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Flow rate range : 800 sccm to 400 sccm (100 sccm step)



EXPERIMENTAL SETUP

Quartz capillary
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©
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1_
: The burst cycle is repeated 20 times with a 2 Hz frequency
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0 100 For each conditions: 20 schlieren images and 20 ICCD images



Plasma OFF

Schlieren images
(int: 1.446 ms)

800 sccm flow rate

= Turbulent transition point:23.7 + 1.6 mm

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France

15



Plasma OFF

Schlieren images
(int: 1.446 ms)

25 mm

Single HV shot

ICCD images
(int: 500 ns)

Single HV shot

numerical
accumulation

800 sccm flow rate
= Turbulent transition point:23.7 + 1.6 mm

= Plasma plume length : 25.6 + 2.2 mm

Mean flow velocity : 11.8 m/s (Re=1241)

lonization wave (IW) propagation velocity : ~10°m/s

During 500 ns : fluid particles have only
propagated on 6 um

On the timescale of IW propagation, the flow is static

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France 16



= |W propagates inside the argon potential core

m) Static flow during IW propagation

[A second IW can be used to probe the flow structure any time after the first HV pulse application}

€
= At= x ms
i (time delay between the two HV shots)
First HV shot <« » Second HV shot
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Double HV shots technique
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Double HV shots

At = 0.90ms

—
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Double HV shots

At=0.90ms At=1.00ms

— ——
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Double HV shots

At=0.90ms At=1.00ms At=1.08ms At=1.15ms At=1.25ms At=1.35ms
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ripple with brightest plasma emission
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Double HV shots

At =0.90ms At=1.00ms At=1.08ms At=1.15ms At=1.25ms At=1.35ms At=1.45ms
| | | | ! !
A .. 1» ‘ 1| ' ; ;
o . : ; 3

——
- -

ripple with brightest plasma emission

Breakdown of the argon potential core :

(at least 1 IW stopped in the series of 20)

Very beginning of the flow breakdown :

= 1.40 ms

Prior to the flow breakdown

= ripple ignition and growth

[ not visible by using schlieren imaging }
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Double HV shots

At=1.70ms At=2.50ms At=2.90ms At=3.50ms At=4.50ms At=6.50ms

Time to recover the full-length
plasma plume

Time to evacuate the flow perturbation

Bright plasma Flow
plume tip perturbation
position (mm) drift velocity
m/s
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Double HV shots

At=1.70ms At=2.50ms At=2.90ms At=3.50ms At=4.50ms At=6.50ms

’

G | 4 ) Perturbation generated at the inner HV tip

g

{3

11.6 mm+ 10 mm
1.70 ms

=12.7m/s

Mean flow velocity : 11,6 m/s

IW ignition at the inner HV electrode:

= ultra fast heating

m) pressure increase

The IW propagation has no effect
on the flow structure
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Single HV shot

1"t pulse

At =x ms

A

1.446 ms

open

close
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Single HV shot

1"t pulse

1.446 ms
At =xms .

to topen tclose

At=0.85ms At=1.70 ms At=2.50 ms At=2.90 ms At=3.50 ms At=4.50 ms At=6.50 ms

One ionization wave ignition is enough to break the laminar flow

Accumulation of perturbations could be expected when multiple HV shots are applied in the kHz regime

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France



m For a 800 sccm flow rate : 6.50 ms to evacuate the perturbation

Accumulation of perturbations could be expected when multiple HV shots are applied in the kHz regime

Fixed: At=3.0 ms

1 kHz 2.5 kHz 4.5 kHz 6 khz 10 khz

= From 1 to 4.5 kHz : development of radial splitting of the jet

= 6 kHz : “closing” of the jet
m 10 kHz : straight flow

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France
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Multiple HV shots

PRF (kHz)
05 1.0 15 20 25 3.0 35 40 45 5.0

800 sccm

0.5 kHz to 6.0 kHz : ripple alternation in a 3D helical-like arrangement
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Multiple HV shots

PRF (kHz)

05 10 15 20 25 3.0 35 40 45 50 55 60 65 7.0 75 80 85 9.0 95 10 15 20
' , § r ' o " V f \A ' ! '

u
)

! 1 i " '
% . ! - |3

)

|

800 sccm

0.5 kHz to 6.0 kHz : ripple alternation in a 3D helical-like arrangement

6 kHz to 20 kHz : Straight plasma plumes
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Multiple HV shots

PRF (kHz)
05 10 15 20 25 3.0 35 40 45 50 55 60 65 70 75 80 85 9.0 95 10 15 20
| F ¥ % B % % O® OT® 1% ' |

800 sccm

Precise PRF range ™ Radial splitting of the jet Beyond transition PRF

® helical-like arrangement of plasma = straight flow and plasma plumes

plumes

PRF range of 3D helical-like plasma plumes depends on the flow rate

It cannot only be explained by the effect of the accumulation of multiple perturbations
inside the gas flow
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Mechanism of flow perturbation: Backward-Facing step forced flow

Separated shear layer

/\/Q\Q Readjusting boundary layer
Recirculation bubble > @H

Ar flow mmp

' Y
< ::
X.(t) Mean reattachment point
Inner HV electrode

=) Unsteady, absolutely unstable and 3D... Extensively studied in fluid mechanics since the 60’s

detached-reattached flows
= All flow regions are strongly coupled ( )

mp Large variety of periodic modes and of large-scale coherent vortex structures (driven by Re)
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Mechanism of flow perturbation: Backward-Facing step forced flow

Separated shear layer

S Q-
:D

IW

Readjusting boundary layer

|

»

X.(t) Mean reattachment point

Inner HV electrode Quartz capillary

=) Unsteady, absolutely unstable and 3D... Extensively studied in fluid mechanics since the 60’s

detached-reattached flows
= All flow regions are strongly coupled ( )

=) Large variety of periodic modes and of large-scale coherent vortex structures (driven by Re)

« beat » between the periodic pressure increase at each IW ignition (driven by PRF)
and the flow frequency (driven by Re)

Analog to a forced BFS flow with surface DBD plasma actuator
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Conclusion

Study of the argon flow modification in a ns argon CAPPJ ® Time-resolved schlieren and ICCD imaging

=) Application of a single HV pulse (single HV shot) to a
series of HV pulses at several PRF (multiple HV shots)

Only one HV shot is enough to disturb the flow and the plasma plume expansion

With the double HV shots, the second IW can be used as a probe, to instantly visualize
the flow structure any time after the application of the first HV pulse

multiple HV shots : Periodic forced flow through the repetitive pressure increase at each IW ignition

Flow control mechanism

It could be easily generalized to other DC pulsed CAPPJ devices, depending on which instabilities modes are
accessible to the flow and to which frequencies the flow instability is sensitive
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Abstract

This paper is devoted to the study of the argon flow modification in a cold atmospheric
pressure plasma jet driven by nanosecond high voltage (HV) pulses, from single to multiple
HV shots applications. A schlieren optical bench has been designed in order to visualize the
argon flow downstream expansion in quiescent air, for moderate flow rates below | standard
liter per minute. A coupled approach is used between charge coupled device (CCD) schlieren
imaging and intensified CCD (ICCD) plasma plume imaging, both time-resolved. It is shown
that the application of only one HV pulse (i.e. single HV shot) is enough to disturb the flow.
The disturbed flow exhibits ripple propagation, on a timescale similar to the flow velocity.
When operating in double HV shots, the second ionization wave can be used as a probe, to
instantly visualize the flow structure any time after the first HV pulse application. For some
flow rates, the ripple can increase in amplitude up to the point when it strongly deforms, or
even stops, the plasma plume expansion, after which it is entrained by the flow and the plasma
plume retrieves its full usual expansion. When a series of HV pulses are applied, the maximal
disturbance of the flow is achieved for a certain pulse repetition frequency (PRF), specific of
each flow rate. It is associated with ripples alternation in the plasma plume, in a 3D helical-like
arrangement. For greater PRF, the ripples progressively vanish, and the flow is clearly less
disturbed. Once the ripples have vanished, increasing further the PRF does not change the
plasma plume and flow structures. We suggest that the repetitive plasma ignition mechanically
forces the flow inside the capillary with consequences on the global flow structure, similarly to
a forced backward-facing step flow with actuator.
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Surface analysis by plasma assisted
mass spectrometry
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Nanosecond pulsed argon plasma jet reactor

dieletric

. cathode ei=10mm dg =1.2 mm
barrier — ee=5mm d;=1.7mm
ds = 4.3 mm
. G| _
r gas
Iy
- A Z 8 T T T T T T T T 400
' 300
- 200
2 £
S 3
4 o
§ o -100
Eur. Phys. J. Appl. Phys. (2016) 75: 24713 === - .
Plasma Sources Sci. Technol. 27 (2018) 065003 Time (ns)

Plasma Process POIVm- 2018; 1300080 Fig. 1. Time evolution of the current (total current: blue
J. App| Phys_ 126, 073302 (2019) dashed line, displacement current: black dotted line) and the

_ voltage (red solid line) for an applied HV pulse of 6.0 kV at
J. Phys' D: Appl Phys. 53 (2020) 475202 20 kHz. Arrows A, B, C, please refer to the text.
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Nanosecond pulsed argon plasma jet: fast imaging

_____________

Fig. 2. Plasma emission captured by ICCD camera for an
exposure time of 200 ns and for single HV pulses. Experimental
parameters: 6 kV, 20 kHz, 0.7 L/min NTP, free argon jet.

transition

Eur. Phys. J. Appl. Phys.
(2016) 75: 24713

Fig. 3. Plasma emission captured by ICCD camera for an
exposure time of 20 ns, and accumulated over 10 successive HV
pulses. Same experimental parameters as those of Figure 2.

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France

FIG. 3. Light emission from the DBD-MPJ captured by
an ICCD camera, over only one single HV pulse. The
applied voltage is 6.0 kV and the Ar flow rate is 750 sccm.
Images (a), (a1), (a2), and (a3) were acquired 93ns,
123 ns, 153 ns, and 173 ns after the peak of the dis-
charge current, respectively, for an exposure time of 5 ns.
A transition zone is highlighted with a rectangular box in
(a1)—(a3). In (a3), two distinct streamer’s heads (SH) are
identified. In (b) (20 ns of exposure time and 153 ns after
the peak current), SP denotes the spatial distribution of
the streamers propagation over 20ns. In (c) (10ns of
exposure time and 221ns after the peak current), the
position of one streamer’s head (SH) at maximum propa-
gation is pointed out.

J. Appl. Phys. 126,
073302 (2019)
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Nanosecond pulsed argon plasma jet: fast imaging

Fig. 4. Plasma emission captured by ICCD camera for an exposure time of 20 ns. Distance from nozzle to plate: 5 mm. Cases
al/, a2/, and b/: please refer to the text. Same experimental parameters as those of Figure 2.

Eur. Phys. J. Appl. Phys. (2016) 75: 24713
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Nanosecond pulsed argon plasma jet: fast imaging

(a) T tube's end

/tube‘s end 0.251/mn

1.01/mn

Fig. 5. Plasma emission captured by ICCD camera for an
exposure time of 250 ns and accumulated over 10 successive
HYV pulses. Distance from nozzle to plate: 5 mm. Angle between
the glass surface and the tube axis: 25°. Discharge parameters:
6 kV, 20 kHz. The argon flow rate values are given in the

pictures.
Fig. 6. Plasma emission captured by ICCD camera for an exposure time of 3 ns and accumulated over 100 successive HV
. pulses. Distance from nozzle to plate: 5.5 mm. Angle between the glass surface and the tube axis: 45°. Discharge parameters:
Eu r. Phys J Appl Phys (2016) 75 : 24713 6 kV, 20 kHz. Argon flow rate: 0.25 L/min NTP. Time scale and arrows denoted “a”, “b”, “c”, “d”: please refer to text.
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Nanosecond pulsed argon plasma jet: desorption

Fig. 8. The bibenzyl deposit on a glass surface after a non-

Fig. 7. The bibenzyl deposit on a glass surface after a per- perpendicular argon plasma jet treatment, showing the partial
pendicular argon plasma jet treatment, showing the partial removal of the film. Discharge parameters: 6 kV, 20 kHz. Dis-
removal of the film. Discharge parameters: 6 kV, 20 kHz. Dis- charge running time: 60 s. Gas flow rate: 0.25 L/min NTP.
charge running time: 10 s. Gas flow rate: 0.25 L/min NTP. Distance from nozzle to plate: 5 mm. Angle between the argon
Distance from nozzle to plate: 8 mm. Axis of the argon jet jet and the plate: 45°. Areas denoted “a”, “b”, “c”, “d”, “e”,
perpendicular to the plate. Areas denoted “a” and “b”: see and “dz”: see text.

text.

8 Fig. 9. The bibenzyl deposit on a glass surface after a non-
perpendicular argon plasma jet treatment, showing the partial
® removal of the film. Discharge parameters: 6 kV, 20 kHz.
Discharge running time: 30 s. Gas flow rate: 0.5 L/min NTP.
Distance from nozzle to plate: 5 mm. Angle between the jet and
. the plate: 25°. The arrow shows the direction of propagation
';'_' of the argon jet.

--—‘-w——-—--—-‘-
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RSB Ty Eur. Phys. J. Appl. Phys. (2016) 75: 24713

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France 39



Nanosecond pulsed argon plasma jet: setup
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Figure 1. Upper part: side section and front view of the
DBD reactor used for the production of the streamers
impacting the glass surface. Lower part: experimental
TDLAS setup used in this work for the measurement of
the argon metastables absolute densities. IR filter:
infrared filter, PD (1, 2, 3): photodiode, ND filter:
neutral density filter, CFPl: confocal Fabry—Perot
interferometer, BS: beam splitter, dRG: distance
between the reactor’s nozzle and the glass plate.
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Nanosecond pulsed argon plasma jet: setup
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Nanosecond pulsed argon plasma jet:
electrical measurement
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Figure 2. (a) Applied voltage (V),), (b) conduction current of the DBD (/pgp), and total current recorded through the wire connecting the
tape glued under the glass plate and the circuit’s ground when the plate is grounded (/pj,c—green), and (c) energy of the DBD (Epgp) over a

voltage pulse, for the cases of a floating-potential glass plate (FPGP, red) and a grounded (GGP, black) glass plates.
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Nanosecond pulsed argon plasma jet: imaging

- Tube’s nozzle

diameter of the area covered by the SIW (luminous ‘disk’ in (a)): up to 13 mm

almost 10x the tube diameter
J. Phys. D: Appl. Phys. 53 (2020) 475202
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Nanosecond pulsed argon plasma jet: Ar*
APPJ

y direction © zdirection

/é\ 60'
2 407 y
= 201 TZ,
2 X
% o]
, Laser beam = -20- w (X)
. v Az ® s -40+ Focal point
Photodiode Ay Gl - 2 60
—ra— aSS a e T T T T T T T T T 1
p 25 20 -15 -10 -05 00 0S5 1.0 15 20 25
X position of the razor blade (mm)
16 %Jetaxis 12 %
= & = ] .
. 312 oo;ooo . 5 10 °°4> Radlal
s 10, © Laser emission (T =31.8°C) E P 2 o Transversal E 3 8 o  semi-profile
e £ 5038 o i ° semi-profile -5 § 6- Jetaxis °© 1
< 81 Gauss fit Gauss Fitting Function g —c‘: e i % g2 4 ° 25
‘? 6_ ( )2 2 §04 Oo °° z _% 2 °°
g _ 4 5 | £ 21 |
g 4 It T g S, 'S IR 2
'g 5] -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 .
§ 0loneepoeo®  Qaogooe Transversal position y (mm) Radial position r (mm) fi 157
811.40 811.45 811.50 811.55 811.60 811.65 811.70 Cj)
2 Wavelength (nm) Wavelength (nm) 2101
£ 811.651 o Experimental values 2 10/ 0.006 - 0.01 nm r
= . : p g a Red Shift ‘ 0 Q=200 sccm ]
5 811.60 Linear fit = 0s. Voigt fit 51
= ] A,,.=811531n B
g 811.55 | __ _Laser 7T 5 §0.6’
= 811.50 ! . =
5 T, =31.8°C S 04
£ 811.45- ! g
8 T T T T T T + T T T T T T T T T T T 1 g 0.2
30.4 30.8 31.2 31.6 32.0 32.4 32.8 332 33.6 34.0 3 00*

) —— %o
Laser temperature ('C) 2009 -006 -003 000 003 006 009 0.12

elavemavleneth (om Plasma Sources Sci. Technol. 27 (2018) 065003
Plasma Process Polym. 2018; 1800080

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France 44



Nanosecond pulsed argon plasma jet: Ar*
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FIG. 8. Typical decay fits of the measured absorbance (at z=3.35mm and
y =0 mm) using Eq. (3), for the determination of the Ar(1ss) effective lifetimes after
the first and the second absorption peaks. The solid blue lines define the limits of
the fitting intervals. Ar flow rate = 750 sccm and applied voltage = 6.0 kV.
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Nanosecond pulsed argon plasma jet: Ar*
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FIG. 10. Longitudinal (z-axis) profile of the effective Ar(1ss) lifetimes averaged
over 4 HV pulses, obtained from the fits of the decay of the absorbance after
the first absorption peak, for three Ar flow rates: 750, 850, and 1000 sccm. The
measurements were performed at the center of the MPJ (y =0) for an applied
voltage of 5.2 kV.
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FIG. 11. Effect of the Ar flow rate on the effective Ar(1ss) lifetimes averaged
over 4 HV pulses, obtained from the fits of the decay of the absorbance after
the first absorption peak, at the center of the MPJ (y=0) and at z=3.85mm
downstream from the nozzle of the capillary tube. Applied voltage = 5.2 kV.

FIG. 4. Mass fraction of argon calculated by a k-e turbulence multispecies fluid
dynamics model (a) along the longitudinal axis (z-axis) at the center of the
argon jet (i.e., y =0) for an argon gas flow rate of 750 sccm, (b) along the radial
position at three longitudinal positions downstream from the nozzle of the capil-
lary tube (z =3.35, 4.85, and 6.35 mm) for an argon gas flow rate of 750 sccm,

Thanks tO A MiChaU (LSPM’ CNRS’ UniV. Paris 13’ France)! and (c) as a function of the argon gas flow rate at the center of the jet (i.e.,

y=0) and at z = 3.85 mm downstream from the nozzle of the capillary tube.
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Nanosecond pulsed argon plasma jet: Ar*
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Nanosecond pulsed argon plasma jet: Ar*
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Nanosecond pulsed argon plasma jet: OES
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Nanosecond pulsed argon plasma jet: temperatures
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Figure 7. (Top) False-color IR camera images used to evaluate Tguqr; (upper images) and T'piae (lower images), when using a
floating-potential glass plate (FPGP, right column) and a grounded glass plate (GGP, middle column). Images on the left column refer to the
case where the plasma was ‘OFF’. (Bottom) Comparison between an experimental (black) and a synthetic (red) rotational spectra of the
OH(A-X) used for the evaluation of Tro of OH(A), when using a GGP.
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Nanosecond pulsed argon plasma jet: temperatures
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Nanosecond pulsed argon plasma jet: desorption
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FIGURE 7 TImages (bl) and (cl): high definition images of bibenzyl molecules deposited on a glass lamella (42 X 42 X 0.2 mm)
and treated only by the gas flow. The effect of the plasma (see white numbers/lines) is shown in images (b2) and (c2) (alumina target)
and (b3) and (c3) (glass target). The corresponding control specimens (before exposure) are shown in images (al), (a2), and (a3). The

deposits were exposed to the gas/plasma for 30s ((b1), (b2), and (b3)) and 10 min ((c1), (c2), and (c3)). V,=6kV, f=20kHz,
0=0.31min™"
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Nanosecond pulsed argon plasma jet: desorption
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Figure 8. D1-D4: high-resolution grey-scale stereomicroscope images of resistant bibenzyl deposits exposed to the Ar APPJ 3 days after J. Phys. D: Appl' Phys. 53
their preparation (exposure times applied: 10—180 s). D1 and D2 are two different deposits treated in the case of a floating-potential glass (2020) 475202
plate (FPGP), while D3 and D4 are another two deposits treated in the case of a grounded glass plate (GGP).
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Nanosecond pulsed argon plasma jet: desorption

Stereomicroscope images 1
GGP 60 s 1%t deposit (D3) Bibenzyl — white color (D3) 100 -
R T ]
< 80-
>
:
L 60
'_E‘ %
=
= 40-
N ]
: °
M 20‘; @ FPGP
' é § @ GGP
0 -
0

100 200 300 400 500 600
Plasma treatment time (s)

Figure 9. (Left) Digital processing results (right column) of the experimental images (left column) of the deposits D3 and D4 shown in
figure 8 and plasma-treated for 60 s while using a grounded glass plate (GGP). (Right) Calculated percentage of bibenzyl film removed from
the lamella surface as a function of the plasma treatment time for both electric potential conditions of the glass plate (obtained from all
deposits of figure 8).

J. Phys. D: Appl. Phys. 53 (2020) 475202

Online Low Temperature Plasma (OLTP) Seminar — February 21st, 2023 — Jodo SANTOS SOUSA, LPGP, CNRS, Univ. Paris-Saclay, France 54



Nanosecond pulsed argon plasma jet: desorption
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Figure 10. High-resolution true-color stereomicroscope images showing the structural modification of a thick bibenzyl deposit after its
exposure to the APPJ under floating-potential (FPGP, (b1)—(b4)) and grounded (GGP, (c)) electric potential conditions of the glass plate. (b)
FPGP case: plasma applied (b1) for 1 min, and, then, (b2) for another 3 min at the 1st treated zone (i.e. circle 1 in (a)), (b3) for 6 min at the
2nd zone (circle 2 in (a)), (b3) for 10 min at the 3rd zone (circle 3 in (a)) and (b4) for 30 min at the 4th zone (circle 4 in (a)). (¢c) GGP case:
plasma applied for 30 min at the 5th treated zone (circle 5 in (a)). PDE: Plasma desorption efficacy.
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Conclusions

a ns-pulsed Ar APPJ was studied for the fast desorption of resistant bibenzyl deposits placed on glass (at floating-
potential or grounded directly) and alumina plates

maximum radial densities of the Ar(1s:) of up to 4x10'* cm~3 were measured at the centre of the APPJ
the profile of the maximum radial density of Ar(1s;) was slightly wider for a grounded glass plate

the Plasma Desorption Efficacy (PDE) was well demonstrated both on thin and thick bibenzyl deposits, depending on
the exposure time to the APPJ, but it was much higher and faster for a grounded glass plate

the bibenzyl removal was attributed to a combined action of Ar(1s;) metastables with oxidative species (such as
atomic oxygen, hydroxyl radical and ozone) and ions (such as N,*, Ar* and Ar,")

thermal effects might also play a synergistic role but only in the case of a glass grounded plate

this APPJ can be, therefore, adopted in various fields related to the fast desorption of weakly volatile organic
compounds from different surfaces

particularly, its joint use with Mass Spectrometry (e.g. detection of prohibited substances such as explosives and drugs)
seems to be very promising for public-security applications
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The present work is devoted to the precise spatiotemporal mapping of the absolute
density of Ar(1ss) in a ns-pulsed argon plasma jet. The plasma impinges on glass and
alumina targets at floating potential placed 5 mm away from the reactor's nozzle.
Under these conditions, diffuse discharges are established in the small gas gap. As so,
the line-of-sight absolute density of Ar(lss) is effectively evaluated via laser
absorption spectroscopy. The application of the Abel-inversion is also demonstrated
for different operating conditions leading to the precise radial mapping of the Ar(1ss)
absolute density. The influence of each target is studied for two gas flow rates, 0.3 and
0.4 1min~". The temporal density profiles over a voltage pulse period reveal two
maxima related with the Ar(1ss) production in the streamer head and in the residual
diffuse plasma channel. Furthermore, the maximum Ar(lss) axial/radial density
(~10"% —3.5x 10" cm™) depends on the target material and gas flow rate.
Finally, the plasma is proved to
be very effective for the fast
desorption of organic molecules

(bibenzyl) deposited on both

Bibenzyl

targets. The results obtained
suggest that the desorption of
bibenzyl is due to the produc-
tion of high Ar(1ss) densities at

the close vicinity of the targets.
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